Chapter 5.2: Sigma Notation and Limits of Finite
Sums



Sigma Notation

Compressing a big sum into a compact form.
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Using >°

Express the following sums in sigma notation:
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Useful Formulas
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Riemann Sums

Recall approximation of the area under f(x) for x € [a, b]
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Idea: Approximation gets better as n — oo.

Take n parts of equal size and always take the right point.
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Computing Area - simple

Find the area under f(x) = 1 from x = 0 to x = b using both geometry and
Riemann sums.

Geometry: Easy. It is a rectangle with width b and height 1, soitis b-1 = b.
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Riemann sums: notice a =10
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Computing Area - easy

Find the area under f(x) = x from x = 0 to x = b using both geometry and
Riemann sums.

Geometry: Easy. It is a triangle with width b and height f(b)=b, so it is
b-b/2 = b2/2.

Riemann sums: notice a =10
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Computing Area - still the same...
Find the area under f(x) = x? from x = 0 to x = b using Riemann sums.

Riemann sums: notice a =10
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Guess for f(x) = xk?
We computed:
The area under f(x) =1 from x =0 to x = b is b.

The area under f(x) = x from x =0to x = b is %2.

The area under f(x) = x? from x =0to x = b is %3.

The area under f(x) = x* from x =0 to x = b is i%

This should look familiar, like an antiderivative of xX.



Computing Area - finally one exciting!

Find the area under f(x) = 1 — x? from x = 0 to x = 1 using Riemann sums.
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Now, if we take the limit as n — oo, then we arrive at
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_.So, we can say certainly that the area under f(x) =1 — x? on [0,1] is 2/3



